Film Bags and Radiation Concerns

Frank Cucinotta and Prem Saganti

April 3, 2000

Background

- Our experience with film bags:
 - Skylab (high inclination = 50 deg).
 - Two heavily shielded (~ 30 and 50 g cm⁻²) film vaults on Skylab-2 received higher radiation (0.39 mGy and 0.33 mGy) suggesting that the shielding was "ineffective" in reducing the cosmic rays dose: NCRP-98/1989. Also, large amounts of metal content of the Skylab can be attributed for several secondary effects.
 - HST repair missions (high altitude).
 - STS-82 (HST-2) and STS-103 (HST-3) were subjected to much higher radiation doses than the average. STS-103 film showed significant degradation in the quality.
 - Shuttle-Mir studies (radiation effects).
 - Film on board the Mir determined that "higher the speed higher degradation". Recommended lower speed film (such as 100 ASA) for minimizing the radiation experiment.

Space Radiation Contribution: Protons and Other Ions

Radiation Induced Damage: At the Human Cell Level

Radiation Doses in Cellular Targets

8,017

100

70208

B Cell Madeus (Og) S Chromatte Filter (Og) S Madeussene (Og) B DS A (Og)

Call Hartess (Sul-

- Chrometta Fiber (5g) - Radionesse (5g) W. 1181

2609 44020 11111100

Offretgy, Hely MIST, helylan

Major Concerns

- Current Film Bags (containing lead)
 - Film
 - Not enough protection from the space environment
 - Radiation damage of the film could result in loss of contrast, sharpness, and color degradation
 - Secondary radiation from lead (like the neutrons) can increase the film damage significantly.
 - Crew
 - Can produce secondary effects of radiation
 - Close contact and proximity of these bags imparts the concerns with the low energy secondary radiation produced
 - High atomic number of lead (z=82) can be of greater concern for secondary radiation (neutrons and etc.)
 - Short term concerns of secondary effects (2 weeks-Shuttle)
 - Long term concerns of secondary effects (2 months-ISS)

Approach

 To identify the material(s) for film bags that can provide adequate protection for film and eliminate the concerns due to lead content

◆ Step-2:

 To recommend the prototype(s) concept of the film bag to the RHO and to the Program

 To evaluate the current bag vs. the new concept bag(s) simultaneously (ground based accelerator studies)

 To evaluate the current bag vs. the new concept bag (both short term and long term on-board studies)

Accelerator Opportunities

- Ground based studies
 - To simulate and evaluate space environment effects
 - LLU (April-2000)
 - Proton beams (up to 250 MeV about 50 cm dia)
 - HIMAC (April-2000)
 - He, C, Ne, Si, Ar (up to 1GeV about 22 cm dia)
 - BNL (October-2000)
 - Fe, Si (up to 1 GeV about 20 cm)

Particle Energy Range Available for Research BNL: AGS (current) and BAF (2003), (HIMAC in Japan)

Plan-A

- To evaluate a single promising material and address related constraints (such as volume limits)
 - Ex. Polyethylene (CH₂, density 0.92 gm/cc)
- To evaluate multi-layer graded shielding approach
 - Polyethylene (CH₂, 0.92 gm/cc)
 - Polyetherimide (C₃₇H₄₂N₄O₆S, 1.27 gm/cc)
 - Polyimide $(C_{22}H_{10}N_2O_5, 1.42 \text{ gm/cc})$
 - Others (?)

Advantage With Additional Shielding: Polyethylene

Plan-b

To augment the current film bags with a new graded shield concept for improved protection (both for film and the crew)

Graded

Shield

Testing With Film

- Expected type
 - Color positive (100, 200, and 400 ASA)
 - Color negative (400 ASA) for immediate damage recognition
 - Others (?)
- Expected exposures
 - Air force resolution chart
 - McBeth color charts
 - Others (?)

Testing With Film

- One control set and several exposed sets for irradiation testing
- Measurement of radiation at the film
 - TLD (Thermoluminesence detectors as used on STS) that can be placed on the film cans for measuring the radiation dose received

Conclusions

- A new prototype bag to be developed soon
- Suggested bag concept needs to be tested for appropriate recommendation
- Suggested prototype bag needs to be evaluated with film for its worthiness
- Testing opportunities are immediately available (in April-00) for evaluation and can be achieved

For More Info of the Space Radiation Health Project

http://sn-

saganti.jsc.nasa.gov/SRHP/